Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38231968

RESUMEN

The aim of this study is to investigate the impact of mechanical recycling on the physical and mechanical properties of recycled polyamide 6 (PA6) and polyamide 66 (PA66) in relation to their microstructures. Both PA6 and PA66 raw materials were reprocessed six times, and the changes in their properties were investigated as a function of recycling number. Until the sixth round of recycling, slight changes in the mechanical properties were detected, except for the percentage of elongation. For the physical properties, the change in both flexural strength and Young's modulus followed a decreasing trend, while the trend in terms of elongation showed an increase. Microscopic analysis was performed on virgin and recycled specimens, showing that imperfections in the crystalline regions of polyamide 6 increased as the number of cycles increased.

2.
Polymers (Basel) ; 13(11)2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34073740

RESUMEN

The present study proposes a reparation method for designing and optimizing a rubber to rubber and rubber to textile reinforcement. The present application is the conveyor belt used in the transport industry. The tensile behavior of the repaired specimens was studied using experimental results. A bidirectional linear analysis allows us to predict the effect of geometric parameters on the stress concentration zone of the repaired belt under hygro-thermo mechanical loading and its consequence on the integrity of the structure. A tensile test was carried out in order to investigate the behavior of a repaired specimen made with a rubber cover patch and an inner composite patch. Two stacking sequences of an inner composite patch and the material properties are considered in the parametric study in order to reduce the stress concentration in the parent belt. The correlation between the theoretical and experimental results allows us to define a strength tool to understand the load transfer from rubber to a textile rubber patch.

3.
Polymers (Basel) ; 14(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35012040

RESUMEN

This work presents the influences of glass fiber content on the mechanical and physical characteristics of polybutylene terephthalate (PBT) reinforced with glass fibers (GF). For the mechanical characterization of the composites depending on the GF reinforcement rate, tensile tests are carried out. The results show that increasing the GF content in the polymer matrix leads to an increase in the stiffness of the composite but also to an increase in its brittleness. Scanning Electron Microscope analysis is performed, highlighting the multi-scale dependency on types of damage and macroscopic behavior of the composites. Furthermore, flammability tests were performed. They permit certifying the flame retardancy capacity of the electrical composite part. Additionally, fluidity tests are carried out to identify the flow behavior of the melted composite during the polymer injection process. Finally, the cracking resistance is assessed by riveting tests performed on the considered electrical parts produced from composites with different GF reinforcement. The riveting test stems directly from the manufacturing process. Therefore, its results accurately reflect the fragility of the material used.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...